LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - MATHEMATICS

FIFTH SEMESTER - NOVEMBER 2011

MT 5508/MT 5502-LINEAR ALGEBRA

Date: 08-11-2011
Dept. No.

Max. : 100 Marks
Time : 9:00-12:00

PART-A

Answer ALL questions:
($10 \times 2=20)$
1.) If V is a vector space over a field F, Show that $(-a) v=a(-v)=-(a v)$ for $a \in F, v \in V$.
2.) Show that the vectors $(1,1)$ and $(-3,2)$ in R^{2} are linearly independent over , the field of real numbers.
3.) If C is the vector space of the field of complex numbers over the field of real numbers, prove that $\operatorname{dim} C=2$.
4.) Define the kernel of a vector space homomorphism.
5.) If V is an inner product space, then prove that $\langle u, \alpha v+\beta w\rangle=\bar{\alpha}\langle u, v\rangle+\bar{\beta}\langle u, w\rangle$ for all $u, v, w \in V$ and $\alpha, \beta \in F$.
6.) Define the characteristic roots and characteristic vectors of a linear transformation.
7.) Define Skew-symmetric matrix. Give an example.
8.) If A and B are Hermitian, show that $A B-B A$ is Skew- Hermitian.
9.) Find the rank of the matrix $A=\left(\begin{array}{ccc}1 & 5 & -7 \\ 2 & 3 & 1\end{array}\right)$ over the field of rational numbers.
10.) If $T \in A(V)$ is Hermitian, then prove that all its eigen values are real.

PART-B

Answer any FIVE questions:

11.) Show that a non empty subset W of a vector space V over a field F is a subspace of V if and only if W is closed under addition and scalar multiplication.
12.) If S and T are subsets of a vector space V over F then prove the following:
i. $) S \subseteq T$ implies that $L(S) \subseteq L(T)$
ii.) $L(L(S))=L(S)$
iii.) $L(S \cup T)=L(S)+L(T)$.
13.) If V is a vector space of dimension n , then prove that any set of n linearly independent vectors of V is a basis of V .
14.) Let V and W be two n -dimensional vector spaces over F. Then prove that any isomorphism T of V onto W maps a basis of V onto basis of W .
15.) Prove that for any two vectors u, v in $V,\|u+v\| \leq\|u\|+\|v\|$.
16.) If $\lambda \in F$ is an eigen value of $T \in A(V)$, then prove that for any polynomial $f(x) \in F[x]$, $f(\lambda)$ is an eigen value of $f(T)$.
17.) Show that any square matrix A can be expressed uniquely as the sum of a Symmetric matrix and a Skew-symmetric matrix.
18.) Solve the system of linear equations

$$
\begin{gathered}
x_{1}+2 x_{2}+2 x_{3}=5 \\
x_{1}-3 x_{2}+2 x_{3}=-5 \\
2 x_{1}-x_{2}+x_{3}=-3
\end{gathered}
$$

over the rational field by working only with the augmented matrix of the system.

PART- C

Answer any TWO questions:

($2 \times 20=40$)
19.) a.) Prove that the vector space V over F is a direct sum of two of its subspaces W_{1} and W_{2} if and only if $V=W_{1}+W_{2}$ and $W_{1} \cap W_{2}=\{0\}$.
b.) If V is a vector space of finite dimension and W is a subspace of V , then prove that $\operatorname{dim} V / W=\operatorname{dim} V-\operatorname{dim} W$.
20.) a.) If U and V are vector spaces over F, and if T is a homomorphism of U onto V with kernel W , then prove that $U / W \simeq V$.
b.) If V is a finite - dimensional inner product space and if W is a subspace of V , then prove that $V=W \oplus W^{\perp}$.
21.) Prove that every finite - dimensional inner product space has an orthonormal set as a basis.
22.) a.) Show that if $T \in A(V)$ is invertible if and only if the constant term of the minimal polynomial for T is not zero.
b.) Find the rank of the matrix

$$
\mathrm{A}=\left(\begin{array}{rrrrrr}
0 & -1 & 3 & -1 & 0 & 2 \\
-1 & 1 & -2 & -2 & 1 & -3 \\
1 & -2 & 5 & 1 & -1 & 5
\end{array}\right)
$$

