LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION - **MATHEMATICS**

FIFTH SEMESTER - NOVEMBER 2011

MT 5508/MT 5502 - LINEAR ALGEBRA

Date: 08-11-2011 Dept. No. Max.: 100 Marks

Time: 9:00 - 12:00

PART-A

Answer ALL questions:

(10X2 = 20)

- 1.) If V is a vector space over a field F, Show that (-a)v = a(-v) = -(av) for $a \in F, v \in V$.
- 2.) Show that the vectors (1,1) and (-3,2) in \mathbb{R}^2 are linearly independent over , the field of real numbers.
- 3.) If C is the vector space of the field of complex numbers over the field of real numbers, prove that dim C = 2.
- 4.) Define the kernel of a vector space homomorphism.
- 5.) If *V* is an inner product space, then prove that $\langle u, \alpha v + \beta w \rangle = \overline{\alpha} \langle u, v \rangle + \overline{\beta} \langle u, w \rangle$ for all $u, v, w \in V$ and $\alpha, \beta \in F$.
- 6.) Define the characteristic roots and characteristic vectors of a linear transformation.
- 7.) Define Skew-symmetric matrix. Give an example.
- 8.) If A and B are Hermitian, show that AB BA is Skew-Hermitian.
- 9.) Find the rank of the matrix $A = \begin{pmatrix} 1 & 5 & -7 \\ 2 & 3 & 1 \end{pmatrix}$ over the field of rational numbers.
- 10.) If $T \in A(V)$ is Hermitian, then prove that all its eigen values are real.

PART-B

Answer any FIVE questions:

(5X8=40)

- 11.) Show that a non empty subset W of a vector space V over a field F is a subspace of V if and only if W is closed under addition and scalar multiplication.
- 12.) If S and T are subsets of a vector space V over F then prove the following:

i.) $S \subseteq T$ implies that $L(S) \subseteq L(T)$

ii.)
$$L(L(S)) = L(S)$$

iii.)
$$L(S \cup T) = L(S) + L(T)$$
.

- 13.) If V is a vector space of dimension n, then prove that any set of n linearly independent vectors of V is a basis of V.
- 14.) Let V and W be two n-dimensional vector spaces over F. Then prove that any isomorphism T of V onto W maps a basis of V onto basis of W.
- 15.) Prove that for any two vectors u, v in V, $||u + v|| \le ||u|| + ||v||$.
- 16.) If $\lambda \in F$ is an eigen value of $T \in A(V)$, then prove that for any polynomial $f(x) \in F[x]$, $f(\lambda)$ is an eigen value of f(T).
- 17.) Show that any square matrix *A* can be expressed uniquely as the sum of a Symmetric matrix and a Skew-symmetric matrix.
- 18.) Solve the system of linear equations

$$x_1 + 2x_2 + 2x_3 = 5,$$

 $x_1 - 3x_2 + 2x_3 = -5,$
 $2x_1 - x_2 + x_3 = -3$

over the rational field by working only with the augmented matrix of the system.

PART- C

Answer any TWO questions:

(2X20=40)

- 19.) a.) Prove that the vector space V over F is a direct sum of two of its subspaces W_1 and W_2 if and only if $V = W_1 + W_2$ and $W_1 \cap W_2 = \{0\}$.
- b.) If V is a vector space of finite dimension and W is a subspace of V, then prove that $\dim V/_W = \dim V \dim W$.
- 20.) a.) If U and V are vector spaces over F, and if T is a homomorphism of U onto V with kernel W, then prove that $U/W \simeq V$.
- b.) If V is a finite dimensional inner product space and if W is a subspace of V, then prove that $V = W \oplus W^{\perp}$.
- 21.) Prove that every finite dimensional inner product space has an orthonormal set as a basis.
- 22.) a.) Show that if $T \in A(V)$ is invertible if and only if the constant term of the minimal polynomial for T is not zero.

b.) Find the rank of the matrix

$$A = \begin{pmatrix} 0 & -1 & 3 & -1 & 0 & 2 \\ -1 & 1 & -2 & -2 & 1 & -3 \\ 1 & -2 & 5 & 1 & -1 & 5 \end{pmatrix}$$